Using CERES to understand the atmospheric energy budget and tropical rainfall variations

William Boos & Nandini Ramesh October 30, 2019

Office of Science

Earth's top-of-atmosphere radiative imbalance

This net radiative input drives the global atmospheric circulation, which in turn sets the distribution of precipitation

net TOA radiation (CERES annual mean)

precipitation (GPCP annual mean)

Can we infer the circulation & rainfall directly from the net radiation?

Modeling Tropical Convergence Based on the Moist Static Energy Budget

J. DAVID NEELIN

Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ 08542

ISAAC M. HELD

Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton, NJ 08542

Can we infer the circulation & rainfall directly from the net radiation?

$$h = c_p T + gz + L_v q$$

Modeling Tropical Convergence Based on the Moist Static Energy Budget

J. DAVID NEELIN

Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ 08542

ISAAC M. HELD

Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton, NJ 08542

moist energy budget:

$$\partial_t h + \mathbf{u} \cdot \nabla h + \omega \partial_p h = F_{net}$$

vertically integrate, time average, neglect horizontal gradients:

$$-\hat{\omega} \langle -\Omega \partial_p h \rangle = \langle F_{\text{net}} \rangle$$

Progress in last decade: instead assume maximum rainfall is coincident with the "energy flux equator"

Progress in last decade: instead assume maximum rainfall is coincident with the "energy flux equator"

Progress in last decade: instead assume maximum rainfall is coincident with the "energy flux equator"

Progress in last decade: instead assume maximum rainfall is coincident with the "energy flux equator"

Progress in last decade: instead assume maximum rainfall is coincident with the "energy flux equator"

3° latitude ITCZ shift per PW of cross-equatorial energy transport

south pole south pole

$$\partial_t \langle h \rangle + \nabla \cdot \langle \vec{u}h \rangle = R_{\text{surf}} - R_{\text{TOA}} + E + H$$

$$\partial_t \langle h \rangle + \nabla \cdot \langle \vec{u}h \rangle = R_{\text{surf}} - R_{\text{TOA}} + E + H$$

$$\partial_t \langle h \rangle + \nabla \cdot \langle \vec{u}h \rangle = R_{\rm surf} - R_{\rm TOA} + E + H$$
 CERES OAFlux (WHOI)

ocean:

atmospheric vertically integrated moist energy budget:

$$\partial_t \langle h \rangle + \nabla \cdot \langle \vec{u}h \rangle = R_{\rm surf} - R_{\rm TOA} + E + H$$
 CERES OAFlux (WHOI)

land:

surface energy budget: $C\partial_t T_s = R_{\mathrm{surf}} + E + H$

ocean:

atmospheric vertically integrated moist energy budget:

$$\partial_t \langle h \rangle + \nabla \cdot \langle \vec{u}h \rangle = R_{\rm surf} - R_{\rm TOA} + E + H$$
 CERES OAFlux (WHOI)

land:

surface energy budget: $C\partial_t T_s = R_{\rm surf} + E + H$

ocean:

atmospheric vertically integrated moist energy budget:

$$\partial_t \langle h \rangle + \nabla \cdot \langle \vec{u}h \rangle = R_{\rm surf} - R_{\rm TOA} + E + H$$
 CERES OAFlux (WHOI)

land:

surface energy budget: $C\partial_t T_s = R_{\rm surf} + E + H$

$$\partial_t \langle h \rangle + \nabla \cdot \langle \vec{u}h \rangle = -R_{\text{TOA}}$$
 CERES

CERES radiation + OAFlux surface turbulent fluxes

annual mean net energy input to the atmosphere

CERES radiation + OAFlux surface turbulent fluxes

annual mean net energy input to the atmosphere

CERES radiation + OAFlux surface turbulent fluxes

annual mean net energy input to the atmosphere

Now let's do two applications

- 1. Earth's seasonal cycle some surprising effects of clouds on precipitation
- 2. The very persistent precipitation bias in climate models

Now let's do two applications

- 1. Earth's seasonal cycle some surprising effects of clouds on precipitation
- 2. The very persistent precipitation bias in climate models

Earth has a large seasonal cycle of rainfall, mostly associated with monsoons

observed seasonal mean rainfall (TRMM)

Earth has a large seasonal cycle of rainfall, mostly associated with monsoons

observed seasonal mean rainfall (TRMM)

The net energy input to the atmosphere drives this seasonal cycle of rainfall

South Asia is unique, with an oceanic maximum of energy input

The net energy input to the atmosphere drives this seasonal cycle of rainfall

South Asia is unique, with an oceanic maximum of energy input

Effect of clouds on net energy input to atmosphere

Effect of clouds on net energy input to atmosphere

Clouds over the North Indian Ocean are colder and more extensive than anywhere else

Clouds over the North Indian Ocean are colder and more extensive than anywhere else

PDF of 500 hPa vertical velocity

These Indian
Ocean clouds have
a larger radiative
forcing than other
regions with similar
large-scale ascent

following Bony et al. 2004

Theoretical prediction of the effect of *tropical* cloud radiative effect on precipitation

tropical cloud radiative effect (W m-2)

-60
-20
-40
-60

$$\nabla^2 \chi' = F'_{\text{net}}$$
$$u'_h \hat{\mathbf{i}} + v'_h \hat{\mathbf{j}} = \nabla \chi'$$
$$P_2(\phi - \delta_\phi, \lambda - \delta_\lambda,) = P_1(\phi, \lambda)$$

Theoretical prediction of the effect of *tropical* cloud radiative effect on precipitation

predicted precipitation change caused by tropical CRE (mm day-1)

Our two applications

- 1. Earth's seasonal cycle some surprising effects of clouds on precipitation
- 2. The very persistent precipitation bias in climate models

CMIP models show a persistent bias in tropical rainfall

CMIP6 precipitation bias (JJA, mm day⁻¹)

CMIP models show a persistent bias in tropical rainfall

CMIP models also have a large positive bias in net energy input over the Southern Ocean

CMIP6 MMM - observations (CERES+OAFlux)

CMIP models also have a large positive bias in net energy input over the Southern Ocean

Theoretical prediction of the effect of the CMIP6 MMM energy input bias on precipitation

Summary

- Moist energy inputs drive tropical circulations
- 2D (lat-lon) moist energy budget frameworks can help in quantitatively understanding how regional rainfall responds to a variety of forcing

 CERES TOA and surface radiative flux estimates provide an important observational constraint on the net energy input

Extra slides

The net radiation drives the global atmospheric circulation, which in turn sets the distribution of precipitation

The net radiation drives the global atmospheric circulation, which in turn sets the distribution of precipitation

Basic motivating idea: Tropical rainfall maxima shift toward an anomalous energy source

Effect of clouds

But we've left out the transient energy storage term (here MAM)

transient storage approximated by dT/dt(500 hPa)

The net energy input to the atmosphere is a central quantity in these frameworks, yet this has received little attention beyond the zonal mean

